KUCC and JVWCD Joint Proposal to the State Trustee for Natural Resource Damages to the Southwestern Jordan Valley Aquifer

Public Hearings
September 10, 2003 – West Jordan
September 25, 2003 - DEQ

ZONE A AND ZONE B SULFATE PLUMES

State Natural Resource Damage (NRD) Trust Fund (Millions)

Date	Irrevocable <u>Letter of Credit^(a)</u>	Lost Use <u>Payment ^(b)</u>	<u>Total</u>
September 1995	\$28.0	\$9.0	\$37.0
September 2003	\$48.1	\$13.2	\$61.3

- (a) Increases at 7% annually
- (b) Invested in Public Treasurer Investment Fund

SCOPE AND PURPOSE OF JOINT PROPOSAL

- Seeks to use all portions of Trust Fund
- NRD and CERCLA Obligations
 - Extract contaminated groundwater from the acid plume at a minimum rolling 5-yr average of 400 ac-ft/yr
 - Complete source control measures
 - Produce 8,235 ac-ft/yr of Municipal Quality Water (MQW)
 - from the extracted water by Reverse Osmosis (RO)
 Treatment
 - delivery of the treated water to affected municipalities
 - Contain sulfate contaminated groundwater >1500 mg/L on Kennecott property via groundwater extraction
 - Prevent or reduce spread of aquifer contamination

ZONE A AND ZONE B SULFATE PLUMES

KUCC Source Control Activities

Zone A

- Eastside Collection System mid 1990s
- Large Bingham Reservoir replacement early 1990s
- Termination of active leaching operations Sept 2000
- Various contaminated soils removal projects
- Zone B
 - South Jordan Evaporation Ponds removal

Kennecott/JVWCD Proposal

Three Main Components:

- Zone A Plant
 - Funded by Kennecott and JVWCD
 - Constructed, owned and operated by Kennecott
 - Produce 3500 ac-ft/yr of Municipal Quality Water
 - From Kennecott water rights
- Zone B Plant
 - Funded by Kennecott and JVWCD
 - Constructed, owned and operated by JVWCD
 - Produce 3500 ac-ft/yr of drinking water
 - From JVWCD water rights
- "Lost use" component
 - Produce 1235 to 2300 ac-ft/yr of drinking water
 - From JVWCD water rights
- All water delivered to the affected municipalities through JVWCD system

Zone A RO Filtration of Sulfate Plume Water 2002 Typical Analyses

	Product Produc			PERMIT LIMIT		
<u>Parameter</u>	UOM	<u>Water</u>	DW Standard	By-product	30-day ave / o	daily max
Arsenic	μ g/L	< 5	50/10	23	250	500
Cadmium	μ g/L	< 1	5	< 1	50	100
Copper	μ g/L	< 20	1300	97	150	300
Lead	μ g/L	< 5	15	< 5	300	5 00
Selenium	μ g/L	< 2	50	36	<i>54</i>	54
Sulfate	mg/L	102	1000	6,683	WET Te	sting
Zinc	μ g/L	< 10	5000	86	224	500
TDS	mg/L	<250	2000	12,000	WET Tes	sting
рН	su	7.0	6.5 - 8.5	7.7	6.5 - 9 .	,0

Project Actions to Date

- All source controls completed and operating
- Extraction of sulfate contaminated water at 3200 gpm from Zone A
- Total current acid extraction ~1500 gpm, or 6 times NRD minimum
 - ~98 million pounds sulfate removed last year
- Significant reductions in sulfate concentrations in majority of Zone A plume area
- Pilot testing of Zone A and Zone B RO Plants
- Final Remedial Design submitted to EPA, DEQ and TRC
- Design/Construction underway for Zone A RO Plant
- 50% Capacity on-line before end of 2003 for Zone A RO Plant

Zone B RO Filtration of Sulfate Plume Water 2002 Typical Analyses

		Product			PERMIT LIMIT
<u>Parameter</u>	UOM	<u>Water</u>	DW Standard	By-product	Daily max
Arsenic	μ g/L	< 5	<i>50/10</i>	20	190
Cadmium	μ g/L	< 1	<u>5</u>	2.5	4.4
Copper	μ g/L	< 20	1300	22	32
Lead	μ g/L	< 5	15	2.5	28
Selenium	μ g/L	< 2	50	20	48.5
Sulfate	mg/L	56	1000	3100	WET Testing
Zinc	μ g/L	< 10	5000	25	257
TDS	mg/L	<250	2000	8,304	8350
рН	su	8.2	6.5 - 8.5	7.7	6.5 - 9.0

Lost Use RO Filtration of Shallow Groundwater 2002 Typical Analyses

		Product			PERMIT LIMIT
<u>Parameter</u>	UOM	<u>Water</u>	DW Standard	By-product	Daily max
Arsenic	μ g/L	< 5	50/10	20	190
Cadmium	μ g/L	< 1	5	2.5	4.4
Copper	μ g/L	< 20	1300	18	32
Lead	μ g/L	< 5	15	25	28
Selenium	μ g/L	< 2	50	20	48.5
Sulfate	mg/L	56	1000	1800	WET Testing
Zinc	μ g/L	< 10	5000	2.5	257
TDS	mg/L	<250	2000	8232	8350
рН	su	8.2	6.5 - 8.5	7.7	6.5 - 9.0

Project Water Allocation

- Zone A water internally subsidized with Trust Fund
- Zone B water cost efficiency through JVWCD system
- Zone A and B water committed to Affected Public for 40 yrs

Zone A Water Allocation

Affected <u>Municipality</u>	<u>Allocation</u>	Annual <u>Volume (AF)</u>	Flow Rate (mgd)
West Jordan	35%	1225	1.2
South Jordan	30%	1050	1.0
Riverton City	20%	700	0.7
Herriman City	15%	525	0.5

Distribution based on population projections

Project Schedule

Activity Completed by

Public Hearings/Comment September 2003

Trustee approval, 4th Quarter 2003

agreements execution

Design/Construction Underway – 4th Quarter 2006

Startup/testing, Complete Zone A – Dec 2005

and Operational Zone B – 2nd Quarter 2007

(Required by Consent Decree)

- Treats contaminated water
- Delivers <u>></u>8,235 acre feet of Municipal Quality Water per year to a local water purveyor
- Provides sustainable 40-year supply to Affected Municipalities at reduced rates
- Prevents or reduces spread of contamination
- Restores the natural resource for the benefit of the Affected Municipalities
- Replaces water lost to concentrate streams in Zone A and Zone B

(Beyond Requirements of Consent Decree)

- Contribution of land and water rights for plant sites by KUCC and JVWCD
- Integration with CERCLA remediation program
- Water quality enhancement at JVWCD's expense
- Use of JVWCD's existing and future supply and treatment infrastructure to back up Zone B and Lost Use Plants

(Beyond Requirements of Consent Decree)

Substantial additional cash contributions by KUCC and JVWCD

Project Funding (a) (\$Millions)

Project Component	ILC(b)	Lost Use	<u>KUCC</u>	JVWCD	<u>TOTALS</u>
Zone A	\$24.05	\$0	\$14.8	\$5.9	\$44.75
Zone B	\$24.05	\$0	\$4.5	\$11.1	\$39.65
Lost Use	<u>\$0</u>	13.2 ^(c)	<u>\$0</u>	<u>\$6.3</u>	<u>\$20.0</u>
TOTALS	\$48.1	\$13.2	\$19.3	\$23.3	\$103.9

- (a) In October 2002 dollars. Includes both construction and O,M&R cost NPV for 40 years.
- (b) Irrevocable letter of credit (September 2003 value).
- (c) \$0.7 million to UDEQ for Trustee expenses.

(Beyond Requirements of Consent Decree)

- Use of JVWCD storage and distribution facilities to deliver water to Affected Municipalities
- Commitment by KUCC to accept and dispose of Zone A and, if necessary, Zone B concentrates using KUCC infrastructure
- JVWCD experience and expertise in constructing and operating a major, integrated public water system
- Development and operation by a public entity -- no "profit" or "return on investment" component in project economics
- Gain experience with R/O technology that will enhance and expedite future public water supply projects

Other Issues

- Shallow groundwater level impacts
- Principal aquifer groundwater level impacts
- Potential contaminant migration
- By-product discharge to Great Salt Lake and/or Jordan River via UPDES permitted outfalls

